Elliptic Flow of Unidentified Charged Hadrons at Forward Rapidities in PHENIX

Eric Richardson
University of Maryland
For the PHENIX Collaboration
APS/JPS Joint Meeting
Waikoloa, HI

October 13-17

Importance

- Measure hadron elliptic flow (v₂) using PHENIX's forward angle spectrometers called the "Muon Arms."
- The muon arms are unique because they have an η coverage of $|1.2| < \eta < |2.2|$ and are the only detectors at RHIC capable of measuring $v_2(p_T)$ over the entirety of this η region.
- This measurement will help to better understand how v₂ changes with η.

Hadron Identification

Use Muon Identifier (MuID)

5 alternating layers of steel absorber and low resolution tracking chambers

Use only tracks that <u>stop</u> in MuID.

Plot p_z distribution of stopped tracks.

U. of Maryland

3

Measuring v₂

- Use standard reaction plane (rp) method which measure particle asymmetry with respect to rp.
- Use rp measured by Reaction Plane Detector (RXNP).
 - 2 halves with each half having 24 plastic scintillators connected to PMT's.
- However, RXNP and muon arms overlap in η coverage.
 - RXNP → |1.0| < η < |2.8|
 - − Muon arms \rightarrow |1.2| < η < |2.2|
- To avoid autocorrelations only use the rp from the RXNP half <u>opposite</u> the muon arm the track is traversing.
 - Muon south uses RXNP north rp
 - Muon north uses RXNP south rp

Measuring v₂

- RXNP measures the RP by the asymmetry in the energy deposited into it by the produced particles.
- Calculate raw v₂
 - $v_{2(meas)} = <cos(2(\phi-\Psi))>$
 - φ = azimuthal angle of track
 - Ψ = RXNP rp angle
- Correct raw v₂ by RXNP rp resolution (R).
 - $v_2 = v_{2(meas)}/R$

v₂(p_T) at Forward Angles

- Bars are statistical errors.
- Lines are systematic errors
 - Reaction plane resolution
 - Background estimation
 - Reaction plane angle used

Comparison to mid-rapidity

- Mid and forward angle particle composition is not the same so the comparison isn't exactly apples to apples.
- Also, steel absorber in front of muon arms further alters particle composition.
- However, a comparison is still of interest.

Comparison to mid-rapidity

Different η angles yield similar results.

Different Centrality Bins

 Significantly lower signal in central collisions compared to mid-central. A well known behavior.

Centrality bins

- Data points indicate a slightly lower signal at forward η but when including errors the signals are similar.
- Of the differences that are seen the larger difference is in the more central bin (0-25%).

Comparing different η

• Plotting $v_2(pT)$ at 4 different η angles ranging from 0->3.

 Data points indicate a falling signal with increasing η, but this is not certain when including errors.

Conclusion

- Strong $v_2(p_T)$ signal seen in the η region of $|1.2| < \eta < |2.0|$.
- Forward and mid-rapidity signals are similar for mid-central collisions (20-60%).
- However, if there is a difference between forward and mid-rapidity measurements it appears with the more central collisions.
- Data points indicate a falling signal with increasing η , but error bars don't make this a certainty.

Backup

Particle Composition

- Significant differences seen with p / π^+
- \overline{p} / π^{-} are similar

Reaction Plane Resolution

$$R = \sqrt{\frac{\langle \cos[2(\Psi_{meas}^{a} - \Psi_{meas}^{b})] \rangle \langle \cos[2(\Psi_{meas}^{a} - \Psi_{meas}^{c})] \rangle}{\langle \cos[2(\Psi_{meas}^{b} - \Psi_{meas}^{c})] \rangle}}$$

3 sub-events

 $\Psi^a = RXNP_N(S)$ - opp. side

 $\Psi^b = RXNP S(N) - same side$

 $\Psi^c = BBC_NS$

What is Elliptic Flow (v_2) ?

- Asymmetric distribution of produced particles in the azimuthal direction caused by a spatial anisotropy in the colliding matter
- If matter thermalizes more particles will be emitted in the direction of the reaction plane because of its steeper pressure gradient.